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Abstract. The effects of single-ion anisotropy and different sublattice transverse fields on the critical prop-
erties of the mixed Ising spin system on the square lattice are investigated within the framework of an
effective field approximation. For certain values of the system parameters, tricritical points and reentrant
phenomena can be observed, due to the competition between the different transverse fields and single-ion
anisotropy. We present a detailed description of the phase diagram.

PACS. 75.10.Jm Quantized spin models – 75.40.Cx Static properties (order parameter, static
susceptibility, heat capacities, critical exponents, etc.) – 75.50.Cc Other ferromagnetic metals and alloys

1 Introduction

In recent decades, there has been an interesting number of
works dealing with critical properties of quantum spin sys-
tems. One of the simplest is the transverse Ising system,
which has been introduced to explain the phase transition
and the order-disorder phenomenon when the tunneling
effect is present. Many authors have investigated the single
spin or the mixed spin transverse Ising model under vari-
ous conditions and within different approximations [1–6].
In particular, it is worth mentioning that the two sublat-
tice mixed transverse Ising spin systems may be described
by different transverse fields in the Hamiltonian. Critical
properties of systems with different tunneling effects have
also been studied by a variety of techniques [7–9].

On the other hand, some studies [11,14] indicate that
the mixed Ising spin system with single-ion anisotropy in
various conditions can show a number of interesting phe-
nomena [10–15], such as reentrant phenomenon. A tricrit-
ical point at which the phase transition changes from sec-
ond order to first order is predicted in the mixed spin-1/2
and spin-S (S = 1 or 2) with a coordination number z
larger than z = 3, when the single-ion anisotropy takes on
a large negative value, although the mixed spin-1/2 and
spin-3/2 system never exhibits any tricritical point [16].

The general idea is to study the critical properties of
the transverse Ising system in the presence of single-ion
anisotropy, and try to analyze the influences of both. In
the last few years, numerous works have touched upon
the single spin (S = 1) Ising ferromagnet with both trans-
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verse field and single-ion anisotropy [17,18]. The tricritical
point is predicted to disappear at a certain critical trans-
verse field value. More recently, the present authors have
analyzed the critical behaviours and magnetic properties
of the mixed transverse Ising ferromagnetic (or ferri) sys-
tem with single-ion anisotropy [19–21]. But these works
concern only the uniform transverse field. The mixed
Ising spin system with single-ion anisotropy and different
transverse fields shows distinct critical properties. To our
knowledge, the above subject has not yet been considered
in previous literature.

The main purpose of this paper is to discuss the influ-
ence of different transverse fields on the critical properties
of the mixed Ising spin-1/2 and spin-1 system with single-
ion anisotropy and to focus attention on the tricritical
point and reentrant phenomenon. The mixed spin system
has less translational symmetry than the single spin sys-
tem counterpart and is well adapted to study a certain
type of ferrimagnetism. The competition between two dif-
ferent transverse fields and single-ion anisotropy may re-
sult in some new phenomena which were not observed in
the single spin Ising system [17] or in the mixed Ising
spin system with the uniform transverse field [21]. The
problem is studied on the basis of the effective field the-
ory with correlations (EFT) introduced by Honmura and
Kaneyoshi [22]. This scheme has been successfully applied
to a variety of Ising spin problems [8,17,19].

The structure of this paper is as follows. Section 2 is
dedicated to the definition of the mixed Ising spin sys-
tem with single-ion anisotropy and different transverse
fields and to the exposition of the theoretical procedure.
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The detailed numerical results and discussion are pre-
sented in Section 3. Section 4 includes a conclusion of the
results.

2 Theory

Let us consider the mixed Ising spin-1/2 and spin-1 sys-
tem in which the different transverse fields and single-ion
anisotropy are considered. This system can be described
by the following Hamiltonian:

H = −J
∑
i,j

σzi S
z
j −Ω1/2

∑
i

σxi

−Ω1

∑
j

Sxj −D
∑
j

(
Szj
)2
. (1)

The underlying lattice is composed of two interpenetrat-
ing sublattices A and B. One is occupied by spin-1/2 with
spin moment σzi and σxi at site A, while the other one is
occupied by spin-1 with spin moment Szj and Sxj at site
B. Here J defines the interaction between the spin at site
i and its neighbour located at site j. The analysis will be
performed only for the simple case of nearest neighbours
interaction. The quantities Ω1/2 and Ω1 are the transverse
field on the A and B sublattices, respectively. D is the pa-
rameter of single-ion anisotropy, assumed to be negative.
The first summation runs only over all pairs of nearest-
neighbour sites. The second summation involves all sites
of A. The third and the fourth summations involve all sites
of B.

Within the EFT, we can investigate the critical prop-
erties and the averaged magnetization for the present sys-
tem with a coordination number z. As was pointed out in
reference [12], tricritical points occur in the mixed Ising
system with single-ion anisotropy when z > 3. Here, for
simplicity we will discuss the square lattice, thus z = 4.
The averaged magnetizations in sublattices A and B are
given by

σ =
〈
σzi
〉

=
〈 4∏
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{(
Szj
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(
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)
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(
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)
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, (2)

and
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{
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2
∇
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2
∇
)}〉

G
(
x
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(3)

while the quadrupolar moment is given by

q =
〈(
Szj
)2〉

=
〈 4∏
i=1

{
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(J
2
∇
)
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(J

2
∇
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H
(
x
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(4)

where ∇ = ∂/∂x is a differential operator and
〈
...
〉

indi-
cates the canonical thermal average. The function F

(
x
)

is
defined by

F
(
x
)

=
1
2

x(
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(
Ω2

1/2 + x2
)1/2)

, (5)

where β = 1/kBT . The functions G
(
x
)

and H
(
x
)

are de-
fined by
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where
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= exp
[
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θ = arccos
(
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)
, (11)

and

A = − 1
27
D3 +

1
3
Dx2 − 1

6
DΩ2

1 . (12)

However, it is clear that if we try to treat exactly the mul-
tispin correlation presented in equations (2-4), the prob-
lem is mathematically intractable. Therefore, we shall take
a decoupling approximation [12,13]〈

σzi σ
z
j ...σ

z
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〉
≈
〈
σzi
〉〈
σzj
〉
...
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...
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〉
, (14)
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for i 6= j 6= ... 6= l. By applying the approximation, the
averaged A sublattice magnetization σ, B sublattice mag-
netization m, and quadrupolar moment q can be evaluated
from the following coupled equations:

σ =
〈
σzi
〉

=
[
q cosh

(
J∇
)

+m sinh
(
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)

+ 1− q
]4
F
(
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, (15)
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)]4

H
(
x
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In the vicinity of the second order phase transition line,
we may expand the right hand sides of equations (15-17)
with respect to σ, m, and q. The set of coupled equations
is then:

σ = 4
(
K1q

3 + 3K2q
2
(
1− q

)
+ 3K3q

(
1− q

)2
+K4

(
1− q

)3)
m+ 4

(
K5q +K6

(
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))
m3, (18)

m = 8L1σ + 32L2σ
3, (19)

q = Q1 + 24Q2σ
2 + 16Q3σ

4. (20)

In order to obtain the A sublattice magnetization σ,
we have to combine equations (18-20). Then the self-
consistent equation of the A sublattice magnetization σ
is given

σ = aσ + bσ3 + ... (21)

where
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The coefficients of the above equations (22, 23) are lengthy
expressions given in the appendix. Since σ is small enough
near the second phase transition line, we retain only first
order and second order terms to be able to get an explicit
solution for the A sublattice magnetization. Then the A
sublattice magnetization σ can be given by

σ2 = (1− a)/b. (24)

The second order phase transition line is determined by
the following equation:

a = 1 and b < 0. (25)

The right hand side of equation (24) must be positive. If
this is not the case, the transition is of the first order,
and hence the point at which a = 1 and b = 0 is the
tricritical point. It should be noted here that in the above
discussions we have not touched on the sign of J . When J
is positive, the ground state of the mixed Ising system is
ferromagnetic. On the other hand, when J is negative, the
system is ferrimagnetic. In the present system sublattices
A and B have different transverse fields, from both the
theoretical and experimental point of view the study may
be very significant.

3 Numerical results and discussions

In this section, we would like to study the influence of the
different transverse fields on the tricritical point and reen-
trant phenomena of the mixed different transverse Ising
spin system with single-ion anisotropy on the square lat-
tice. By solving equation (25) numerically, we can obtain
the second phase transition line of the present system.

Figures 1a, 1b, 1c express the dependence of the Curie
temperature on the single-ion anisotropy parameter for
three cases corresponding to the transverse field values of
the A sublattice Ω1/2/J = 0.0, 0.552 and 1.4, respectively,
when the transverse field value Ω1/J of the B sublattice is
changed. For square lattice (z = 4), there is a possibility
of the existence, under certain conditions, of a tricritical
point at which the transition changes from second order to
first. The full circles denote the tricritical points. As is seen
from Figure 1a, when the value of D/J takes a large neg-
ative value, on the curve labeled Ω1/J = 0.0 the tricrit-
ical point appears. Moreover, the transition temperature
is given by kBTc/J = 1.2988 in zero single-ion anisotropy
parameter, which is to be compared with the results of the
standard mean field approximation (kBTc/J = 1.633) [8],
the Bethe-Peierls method (kBTc/J = 1.240) [10] and the
finite cluster approximation (kBTc/J = 1.298) [14]. This
behaviour is in good agreement with that of the Blume-
Capel model [12]. Obviously, the present result is quite su-
perior to that of the standard mean field approximation,
slightly different from that of the Bethe-Peierls method
and consistent with that of the finite cluster approxima-
tion. The decoupling approximation in the present system
does not affect the result qualitatively from a comparison
with the above-mentioned in some known works. Hence,
the decoupling approximation may be a simple but valid
method. On the other hand, the transverse field makes
the transition temperature decrease; therefore, at a cer-
tain value of Ω1/J , the tricritical point may disappear.
We calculate the possibility of the existence of the tri-
critical point. From our detailed numerical investigations,
we have found that the present system exhibits tricriti-
cal points for 0 ≤ Ω1/J < 0.5876. When Ω1/J ≥ 0.5876,
the tricritical point does not appear in the present sys-
tem (see curves Ω1/J = 0.5876; 1.0; 2.0). From Figure 1b
we can see that if Ω1/2/J = 0.5520, i.e., the transverse
field value of the A sublattice is small, and the phase di-
agram is similar to that in the Figure 1a case. However,
it should be noted here that in the case of Figure 1b,
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Fig. 1. Curie temperature dependencies of the negative single-ion anisotropy parameter D/J for the A sublattice Ω1/2/J values
of (a) 0.0, (b) 0.5520 and (c) 1.4. The numbers on the curves are the values of Ω1/J .

Fig. 2. Curie temperature dependencies of the negative single-ion anisotropy parameter D/J for the B sublattice Ω1/J values
of (a) 0.0 and (b) 0.4. The numbers on the curves are the values of Ω1/2/J .
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Fig. 3. The scope of the tricritical point that can exist is shown
in (Ω1/2/J−Ω1/J) space.

the tricritical point still appears but the system exhibits
the tricritical point only for 0 ≤ Ω1/J < 0.5520, due to
the existence of the A sublattice transverse field. In partic-
ular, we notice that the tricritical point just disappears in
the present system when Ω1/2/J = Ω1/J = 0.5520, i.e.,
the different transverse fields turn into the uniform trans-
verse field. The result obtained here is consistent with the
result in reference [21]. In Figure 1c we assume the A sub-
lattice transverse field to be Ω1/2/J = 1.4, Reentrant phe-
nomena is shown in curves labeled Ω1/J = 0.0 and 0.4,
from which one can see that the reentrant phenomenon
is depressed with increasing B sublattice transverse field
Ω1/J . In other words, when the Ω1/2/J is large and the
Ω1/J is not too large, the reentrant phenomenon becomes
weak. When the Ω1/J is larger than this certain value the
reentrant phenomenon vanishes. Hence, the role of the B
sublattice transverse field Ω1/J is to destroy the reentrant
phenomenon. We may also determine that in this case the
system exhibits a tricritical point for 0 ≤ Ω1/J < 0.4426.
On the other hand, we can observe a characteristic phe-
nomenon in Figures 1a and 1b. That is, with increasing
the value of the B sublattice transverse field Ω1/J , the
negative single-ion anisotropy parameter first increases
and then decreases. We also note that with increasing the
value of the A sublattice transverse field Ω1/2/J , the phe-
nomenon gradually becomes weak and then disappears.
The phenomenon cannot be obtained by using the mixed
uniform transverse Ising spin system [21].

In Figures 2a and 2b, we plot the dependence of
the Curie temperature on the single-ion anisotropy for
the present system with Ω1/J = 0.0 and 0.4, respec-
tively, when the value of Ω1/2/J is changed. As is seen
from Figure 2a, the second order transition temperature
goes to zero at a value of D/J = −1.0 if the value
of the A sublattice transverse field varies in the ranges
2.193 ≤ Ω1/2/J ≤ 5.267, while the tricritical point ap-
pears in the 0.0 ≤ Ω1/2/J ≤ 2.192 region. In other words,
the second order transition does not exist in the low tem-
perature region when Ω1/2/J is not too large; the second

order transition could appear at zero temperature but,
when Ω1/2/J is larger. Therefore, the existence or disap-
pearance of the tricritical point depends on the critical
value Ω1/2/J = 2.193. It is obvious that the tricritical
temperature and tricritical negative single-ion anisotropy
parameter decreases monotonically with increasing the
Ω1/2/J . On the other hand, for Ω1/2/J = 1.0, 1.8, 2.2,
and 3.0, the reentrant phenomenon can be observed.
However, for Ω1/2/J = 0.0, 0.5, 3.8, and 4.6, the reen-
trant phenomenon is not observed. In this way, when the
value of the A sublattice transverse field varies in the
ranges 0.793 ≤ Ω1/2/J ≤ 3.473, the phase transition line
may exhibit reentrant phenomena in the (T , D) space.
It is important to notice that the second order reentrant
phenomenon occurs with increased Ω1/2/J . Here the role
of Ω1/2/J is not to destroy but to assist the reentrant
phenomenon. Figure 2b shows that, as compared to the
previous case of Figure 2a, values of the negative single-
ion anisotropy parameter D/J for which the second or-
der transition temperature goes to zero are no longer the
same for different values of Ω1/2/J . In this case, the reen-
trant phenomenon can also be observed under Ω1/J = 0.4
(see the curves labelled 1.5 and 2.0), but the reentrant
phenomenon is depressed. This behaviour of the different
transverse fields Ω1/2/J and Ω1/J can be seen from a
comparison between Figures 2a and 2b. This means that
the A sublattice transverse field Ω1/2/J , under certain
ranges, will assist the occurrence of the reentrant phe-
nomenon, while the B sublattice transverse field Ω1/J will
destroy the reentrant phenomenon. Thus, the influence of
the Ω1/2/J and Ω1/J on the reentrant phenomenon is
very different.

In Figure 3 the localization of the tricritical point
in the (Ω1/J,Ω1/2/J) space is depicted. Clearly, the ex-
istence of the tricritical point is affected by the trans-
verse fields Ω1/2/J and Ω1/J beside negative single-ion
anisotropy parameter. Hence, there may be two differ-
ent critical sublattice transverse fields values Ω1/2k/J and
Ω1k/J . When Ω1/2/J ≥ Ω1/2k/J or Ω1/J ≥ Ω1k/J , the
tricritical point is no longer obtained. From our calcula-
tion, Ω1/2k/J = 2.192 and Ω1k/J = 0.5876. As shown in
Figure 3, the existence scope of the tricritical point can
be indicated in the present system, if the A sublattice
transverse field varies in the ranges 0.0 ≤ Ω1/2/J < 2.192
and the B sublattice transverse field is in a restricted
region 0.0 ≤ Ω1/J < 0.5876. In other words, when
Ω1/2/J ≥ 2.192 or Ω1/J ≥ 0.5876, the tricritical point
do not appear in the present system.

Finally, let us discuss the differences between the
mixed uniform transverse spin system results and the
present results. These differences can be understood by
the simple physical interpretation. An important factor
follows from the fact of the different transverse fields of
both A and B sublattices. Thus the situation entirely dif-
fers from the mixed uniform transverse spin system. In
particular, considering the uniform transverse field in ref-
erence [21], we cannot obtain the reentrant phenomenon
and the characteristic phenomenon of the negative single-
ion anisotropy parameter in Figures 1a and 1b. Clearly,
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two different transverse fields indicate different quantum
effects; this leads to the outstanding features of the present
system. It is expected to be suitable for more general sit-
uation.

4 Conclusion

In this paper, the tricritical point and the reentrant phe-
nomenon have been computed for the mixed different
transverse Ising spin system with single-ion anisotropy
by means of the effective field theory with correlations,
making use of a decoupling approximation. We have dis-
cussed in detail the tricritical point and the influence of
the different sublattice transverse fields on the tricritical
point. We have observed that the present system with
the A sublattice transverse field Ω1/2/J in the ranges
0.0 ≤ Ω1/2/J ≤ 2.192 and the B sublattice transverse field
Ω1/J in the region 0.0 ≤ Ω1/J ≤ 0.5876 may display tri-
critical behaviour when the negative single-ion anisotropy
parameter takes large values. Furthermore, the character-
istic behaviour of the single-ion anisotropy has been dis-
covered by changing the values of the different transverse
fields, as depicted in Figures 1a and 1b.

On the other hand, we have shown the existence of the
reentrant phenomenon in the present system. Moreover,
we have clarified that the different sublattice transverse
fields play an opposite role: one induces, the other de-
presses the reentrant phase transition. That is, the role of
the A sublattice transverse field Ω1/2/J will promote the
tendency of the reentrant phenomenon under certain con-
ditions, while the role of the B sublattice transverse field
Ω1/J will destroy the reentrant tendency. This behaviour
is explicitly shown in Figures 2a and 2b.

As discussed in Section 3, a number of interesting phe-
nomena have been found, which can be attributed to the
competition between the different sublattice transverse
fields and the single-ion anisotropy in the present system.
Finally, it is important to mention that the results are
obtained within the present framework. It is clear that
different results would be given if some other approxima-
tion methods were adopted [8,10]. However, we believe
that the results obtained here are significant for material
science.
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